Syllabus for Structural Engineering

1st Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>Theory of Elasticity and Plasticity</td>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>PC2</td>
<td>Structural Dynamics</td>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>PC3</td>
<td>Matrix methods of Analysis of Structures</td>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>PE1, PE2</td>
<td>Professional Electives (Any Two)</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>a) Bridge Engineering</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>b) Advance Construction Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Advance Numerical methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Theory of Plates and Shells</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) Earthquake Resistant Design of Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f) Tall Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credits (Theory)</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC4</td>
<td>Elastic Stability and Behaviour of Metal Structures</td>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>PC5</td>
<td>Advanced Reinforced Concrete Design</td>
<td>4-0-0</td>
<td>4</td>
</tr>
<tr>
<td>PE3, PE4, and PE5</td>
<td>Professional Electives (Any three)</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>a) Finite Element Analysis of Structures</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>b) Offshore Structures</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>c) Wind Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Composite Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e) Structural Optimisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>f) Advanced Steel Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g) Soil Dynamics and Geotechnical Earthquake Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h) Industrial Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i) Infrastructure Engineering and Transportation Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credits (Theory)</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Structural Engineering Laboratory</td>
<td>0-0-3</td>
<td>2</td>
</tr>
<tr>
<td>PC</td>
<td>CAD Laboratory</td>
<td>0-0-3</td>
<td>2</td>
</tr>
<tr>
<td>PC</td>
<td>Technical Seminar</td>
<td>0-0-3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credits (Practicals/Sessionals)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL SEMESTER CREDITS</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

2nd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Earthquake Resistant Design and Detailing of Structures</td>
<td>0-0-6</td>
<td>4</td>
</tr>
<tr>
<td>PC</td>
<td>Comprehensive Viva</td>
<td>0-0-3</td>
<td>2</td>
</tr>
<tr>
<td>PC</td>
<td>Technical Seminar</td>
<td>0-0-3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Credits (Practicals/Sessionals)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL SEMESTER CREDITS</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Contact Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL CUMULATIVE CREDITS</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Subject</td>
<td>L-T-P</td>
<td>Credits</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>FE</td>
<td>a) Disaster Management and Mitigation</td>
<td>3-0-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>b) Non Conventional Energy</td>
<td>3-0-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Project Planning and Construction</td>
<td>3-0-0</td>
<td></td>
</tr>
</tbody>
</table>

Credits (Theory) 03

Practical/Sessionals

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Thesis Part-I</td>
<td>0-0-3</td>
<td>14</td>
</tr>
</tbody>
</table>

Credits (Practicals/Sessionals) 14

Total Semester Credits 17

Total Cumulative Credits 66

4th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Credits (Theory)</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

Practical/Sessionals

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>L-T-P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Thesis Part-II</td>
<td>0-0-6</td>
<td>20</td>
</tr>
<tr>
<td>PC</td>
<td>Technical Seminar</td>
<td>0-0-3</td>
<td>2</td>
</tr>
<tr>
<td>PC</td>
<td>Viava</td>
<td>0-0-3</td>
<td>2</td>
</tr>
</tbody>
</table>

Credits (Practicals/Sessionals) 24

Total Semester Credits 24

Total Cumulative Credits 90
Theory of Elasticity & Plasticity: (PC1)

Module-1:
Linear elasticity; stress, strain, constitutive relations, strain displacement relations, three dimensional stress and strain analysis, compatibility, stress and displacement functions.

Module 2:
Two dimensional problems in Cartesian and polar coordinates, description of an elasticity problem as a boundary value problem, bending of beams-cantilever and simply supported beam.

Module 3:
Torsion of rectangular bars including hollow sections, torsion of a circular and a rectangular section

Module-4: Elements of plasticity, failure & yield criterion, Equations of plasticity, plastic stress-strain relations, flow rule, velocity field, slip lines and plastic flow, incremental plasticity.

Books:
(2) M.Kachanov, "Theory of Plasticity", MIR Publication.
(3) C.R.Calladine, "Plasticity for Engineers", Ellis Horwood, Chichester, U.K., 1985

Structural Dynamics (PC2)

Module 1:
Oscillatory motion; harmonic motion, periodic motion, vibration terminology, Free vibration; equations of motion-natural frequency, energy method, principle of virtual work, viscously damped free vibration, Coulomb damping, Harmonically excited vibration; forced harmonic vibration, energy dissipated by damping, equivalent viscous damping, structural damping, vibration measuring instruments

Module 2:
Transient vibration; impulse excitation, arbitrary excitation, Laplace transform formulation, response spectrum, Introduction to multi degree of freedom systems; normal mode vibration, forced harmonic vibration, vibration absorber, vibration damper.

Module 3:
Properties of vibrating systems, flexibility matrix, stiffness matrix, stiffness to beam elements, eigen values and eigen vectors, modal matrix, modal damping in forced vibration, normal mode summation, normal mode vibration of continuous beams, vibrating string, longitudinal vibration of rods, torsional vibration of rods, Euler equation for beam, effect of rotary inertia and shear deformation.

Module 4:
Random vibrations, random phenomena, time averaging and expected value, frequency response function.

Books:
(1) W.T.Thomson, "Theory of Vibration with Applications"
Matrix Methods of Analysis of Structures (PC3)

Module 1: Introduction, equilibrium, static and kinematic indeterminacy, kinematics, virtual work, concepts of stiffness and flexibility, analysis by displacement and force methods.

Module 2: Application of flexibility method to beams and plane trusses.

Module 3: Application of stiffness method to beams, plane frames and plane trusses.

Module 4: Application of stiffness method to space truss, space frames and grids, basic concepts associated with computer implementation of stiffness method.

Books:

(1) H.C.Martin, "Introduction to Matrix Methods of Structural Analysis."

(2) M.B.Kanchi, "Matrix Methods of Structural Analysis", New Age International Publishers, New Delhi Kardestuncer ,

(3) "Elementary Matrix Analysis of Structures" Gere & Weaver, "Matrix Structural Analysis’

PROFESSIONAL ELECTIVES-PE1 and PE2 (any two)

(a) Bridge Engineering

Module 1: Introduction and selection of type of bridges, longitudinal arrangement and economical span, bridge components, Design preliminaries: Layout, types of loads including wind and seismic loads, standard specifications for road bridges, substructures, superstructures, IRC provisions on loads and stresses, specification for single/double multi lane railway and road bridges, Abutments, piers and their foundations .

Module 2: Design of reinforced concrete slab culvert, box culvert bridge.

Module 3: Tee beam and slab bridge deck, design of prestressed concrete bridge.

Module 4: Design of balanced cantilever bridge, design of continuous bridge, Introduction to long span bridges.

Books:

(b) Advanced Construction Materials

Module 1:

Module 2:

Module 3:
Foams and light weight materials, fibre reinforced concrete. Types of fibres, workability, mechanical and physical properties of fibre reinforced concrete. Polymers in Civil Engineering, Polymers, fibres and composites.

Module 4:

Books:
- Proceedings of recent seminars etc. and journals.

(c) Advanced Numerical Methods

Module 1: Introduction to digital computers & Programming - an overview; Errors - polynomial approximations and interpolations - Numerical differentiation & Integration;

Module 2: Evaluation of single and multiple integrals, Newton’s method, variational and weighted residual methods., Matrices – Linear equations, Eigenvalues and Eigenvectors - nonlinear equations,

Module 3: Harmonic and biharmonic equations - solutions, convergence, completeness & stability.

Module 4: Initial and boundary value problems of finite difference method, Implicit & Explicit scheme.
(d) Theory of Plates & Shells

Module 1:
Plate equation and behaviour of thin plates in cartesian, polar coordinates; Isotropic and orthotropic plates, bending and twisting of plates.

Module 2:
Navier's solution and energy method, rectangular, circular plates with various end conditions.

Module 3:
Shell behaviour, shell surfaces and characteristics, classifications of shells, equilibrium equations in curvilinear coordinates, force displacement relations.

Module 4: Membrane analysis and bending theory of shells of revolution, cylindrical shells under different loads, shallow shells, solutions of typical problems.

Texts/References
- A.C.Urugal, "Stress in plates and shells"
- N.K. Bairagi, Plate Analysis, Khanna Publishers, Delhi, 1986
- N.K. Bairagi, Shell Analysis, Khanna Publishers, Delhi, 1990

(e) Earthquake Resistant Design of Structures

Module 1:
Characteristics of earthquakes; Earthquake response of structures; Seismology, seismic risk and hazard, Soil dynamics and seismic inputs to structures, Characterization of ground motion; lateral load calculation, base shear

Module 2:
Earthquake intensity and magnitude; Recording instruments and base line correction; Predominant period and amplification through soil; Response spectrum, analysis, Spectral analysis,

Module 3:
Idealization of structural systems for low, medium and high rise buildings; Nonlinear and push over analysis, Dynamic soil-structure interaction. Earthquake design philosophy,

Module 4:
Concept of earthquake resistant design; Code provisions of design of buildings; Reinforcement detailing for members and joints, retrofitting and strengthening of structures, concept of base isolation design and structural control.

Text Book:
- Earthquake Resistant Design: Shrikhandee & Agarwal-PHI Publ
- I.S. Codes No. 1893, 4326, 13920 etc.
Module 1:
Structural systems and concepts. Matrix and approximate methods, analysis of tall building frames, lateral load analysis, multi bay frames, gravity loads, settlement of foundation.

Module 2:
Foundation-superstructure interaction. Earthquake effects and design for ductility. Analysis of shear walls - plane shear walls, infilled frames, coupled frames, frames with shear walls.

Module 3:
Principle of three dimensional analysis of tall buildings; Perforated cores, pure torsion in thin tubes, bending and warping of perforated cores.

Module 4:
Analysis of floor system in tall buildings, Vierendal girders, diagrid floors, elastic stability of frames and shear walls. Analysis of thermal stresses.

Sessionals:

Structural Engineering Laboratory (PC)
Concrete: Concrete mix design and testing, non-destructive testing of concrete. Reinforced concrete: underreinforced and over-reinforced beams, columns under eccentric loading, two-way reinforced slabs. Tests on RC beam, Prestressed beam, RC column, Steel beam, Steel column; Application of acoustic emission instrument, ultrasonic test. Biaxial and multiaxial testing. Steel-concrete composite,

CAD Laboratory (PC)
Application pf STAAD PRO Software for various design problems
Elastic Stability & Behaviour of Metal Structures (PC4)

Concept of stability, static, dynamic and energy criterion of stability; Beam-columns; differential equations for beam-columns, beam-columns subjected to transverse load, beam-columns subjected to end moments, application of Trigonometric series.

Elastic buckling of bars and frames; Euler column formula, buckling of frames, torsional buckling, pure torsion of thin-walled bars of open cross section, nonuniform torsion of thin-walled bars of open cross section, buckling by torsion and flexure, warping torsion.

Lateral buckling of beams; differential equations for lateral buckling, lateral buckling of beams in pure bending, lateral buckling of a cantilever beam and a simply supported I beam, , Torsional stability of beams bending of thin plates; bending of plates by distributed lateral load.

Behaviour of Metal Structures

Structural steel, brittle fracture and fatigue, plastic behaviour of flexural member, plastic analysis of beams and rigid frames, upper and lower bound theorems, mechanism and equilibrium methods, plastic design of beams and frames, design of light weight gauge sections

Books:
- D.O.Brush and B.O.Almorth, " buckling of bars, plates and shells". Arya & Ajmani,"Design of Steel Structures"
- B.G.Neal," Plastic Methods of Structural Analysis", Chopman & Hall
- Galambus, T.V., " Structural Members and Frames", Prentice Hall INC.

Advanced Reinforced Concrete Design (PC5)

Limit state design concepts in flexure, shear, torsion and combined stresses. Slender column, safety and serviceability, control of cracks and deflections. Yield line theory analysis of slabs, work and equilibrium methods.

Introduction to limit design of beams and frames., General principles and philosophies of design with special references to the codal provisions. Serviceability and stability requirements.

Books:
- Park & Paunlay,"Reinforced Concrete Structures".
- Ramakrishna & Arthur,"Ultimate strength design for structural concrete".
- B.I.S. Codes
(a) Finite Element Analysis of Structures

Module 1:
Basic principles of structural mechanics, principle of virtual work, energy principles, element properties; relation between nodal degrees of freedom and generalized coordinates, convergence requirements, natural coordinate systems, shape functions, element stiffness matrix.

Module 2:
Isoparametric elements; computation of stiffness matrix for isoparametric elements, direct stiffness method of analysis and solution technique, assemblage of elements, direct stiffness method, boundary conditions and reaction, basic steps in finite element analysis.

Module 3:
Analysis of framed structures; 2 and 3 dimensional truss element, 2 dimensional beam element, stiffness matrix for a two dimensional beam element with 6 d.o.f., element load vector, transformation matrix, computation of stress resultants, shear deformation, plane stress and plane strain analysis, nodal load vector, rectangular elements, 8 noded rectangle, isoparametric elements, axisymmetric solid element.

Module 4:
Three dimensional stress analysis, 8 noded isoparametric solid element, analysis of plate bending, displacement functions, various types of plate bending elements, types of isoparametric elements, analysis of shells; bilinear degenerated shell element strain-displacement matrix, stress-displacement matrix, element stiffness matrix, 8 noded shell element, analysis using finite element computer codes.

Books:

(b) Offshore Structures

Module 1:
Design of offshore platforms: Introduction, fixed and floating platforms. case studies and general features-elements of hydrodynamics and wave theory-fluid structure interaction, Steel, concrete and hybrid platforms.

Module 2:

Module 3:
Behaviour under dynamic loading. Static and dynamic analysis of platforms and components.

Module 4: Dynamic response in deterministic and indeterministic environment, codes of practice, analysis of fixed platform and semisubmersible related topics.
(C) Wind Engineering

Module 1:
Causes and types of wind; atmospheric boundary layer and turbulence, wind velocity measurements and distribution,

Module 2:
Bluff-body aerodynamics, random vibrations and spectral analysis, Alongwind and acrosswind response of tall buildings, towers and slender structures,

Module 3:
Aeroelastic phenomena, vibration of cable supported bridges and power lines due to wind effects, wind pressure on cooling towers,

Module 4:
Design of cladding and wind damping devices, Wind tunnel simulations and tornado effects.

(d) Composite Structures

Module 1:
Introduction: definition and characteristics, fibres, matrices, fibre reinforced composites, advantages and limitations, basic concepts and characteristics: isotropy, orthotropy, classification, limina and laminate, micromechanics and macromechanics, constituent materials and properties.

Module 2:
Elastic behaviour of unidirectional lamina: specially orthotropic and transversely isotropic material, relation between mathematical and engineering constants, stress strain relations for thin lamina, transformation of stress and strain, transformation of elastic parameters, transformation of stress-strain relations in terms of engineering constants.

Module 3:
Elastic behaviour of multidirectional laminates, symmetric and balanced laminates, design considerations, computational procedure for finding engineering elastic properties, stress and failure analysis of multidirectional laminates.

Module 4:
Bending of laminated composite plates, thin laminated plate theory, deflection of all edges simply supported rectangular symmetric cross-ply laminate, two opposite edges simply supported.

Books:
2. S.W. Tsai & H.T. Hahn, "Introduction to Composite Materials: Technomic Publishing Co. INC, USA
(e) Structural Optimisation

Module 1:
Formulation of different types of structural optimization problems; Optimality criteria based structural optimizations;

Module 2:
Computation of derivatives of response quantities w.r.t. design variables; Classical optimization;

Module 3:
Lagrange multiplier technique and Kuhn-Tucker conditions;

Module 4:
Solution of NLP by direct methods and by series of unconstrained optimization problems and by series of linear programming problems.

Books:

(f) Advanced Steel Structure

Module 1:
Properties of steel: mechanical properties, hysteresis, ductility; Hot-Rolled Sections: compactness and non-compactness, slenderness, residual stresses; Design of steel structures:

Module 2:
Inelastic bending – curvature, plastic moments, design criteria - stability, strength, drift; Stability criteria: stability of beams - local buckling of compression flange & web, lateral-torsional buckling,

Module 3:
Stability of columns - slenderness ratio of columns, local buckling of flanges and web, bracing of column about weak axis, method of design - allowable stress design, plastic design, load and resistance factor design; Strength Criteria: beams – flexure, shear, torsion, columns - moment magnification factor, effective length, P-M interaction, bi-axial bending, joint panel zones; Drift criteria: P-Δ effect,

Module 4:
Deformation-based design; Connections: types – welded, bolted, location - beam-column, column-foundation, splices.
(g) Soil Dynamics & Geotechnical Earthquake Engineering

Module 1:
Engineering problems involving soil dynamics; Role of inertia; Theory of Vibrations: Single and two-degree freedom systems, vibration-measuring instruments, vibration isolation,

Module 2:
Wave propagation in elastic media. General nature of soil behaviour under cyclic/dynamic loading; Field and Laboratory tests for measurement of small strained and large strain, dynamic properties of soils.

Module 3:
Design criteria for machine foundations, elastic homogeneous half space solutions, lumped parameter solutions. Codal provisions. Strong Ground Motion: Measurement, characterization and estimation. Dynamic soil properties; Ground response analysis; Effect of local site conditions on ground motion;

Module 4:
Amplification theory and ground response analysis. Densification and liquefaction of granular soils, Liquefaction: evaluation of liquefaction hazards, effects of liquefaction; Case studies. Seismic slope stability analysis, Seismic bearing capacity and earth pressures. Codal provisions. Elastic theories of soil dynamics; Wave propagation; Dynamic soil properties; Vibration isolation; Pile dynamics.

(h) Industrial Structures

Module 1:
Planning of industrial structures. Design of single and multibay industrial structures in steel and concrete.

Module 2:
Bunkers and silos. Pressure vessels and chimneys.

Module 3:
Cooling towers. Large span roof structures.

Module 4:
Suspended roof structures. Structural aspects of machine foundations.
Module 1:
Quick response travel evaluation procedure, TSM actions: Traffic management techniques for improving vehicular flow, preferential treatment for high occupancy modes, demand management technique for reduced traffic demand, staggered hours, vehicle restrictions. Small area management: individual sites, residential neighbourhoods,

Module 2:
Introduction to transportation systems. Transportation innovations, social and economic impacts of transportation. Decision makers and their options, demand modeling and prediction. Stated and Revealed Preference approaches; Modeling transportation technologies.

Module 3:
Analysis of network flows. Transportation networks. Network Theory. planning for pedestrians, parking planning. Travel demand management and telematics in travel planning, Design and drawing of grade intersections, Rotaries, interchanges (cloverleaf, trumpet), multilevel intersections; Onstreet parking facilities; Off-street parking facilities (parking lots and garages);

Module 4:
Layout for buses and trucks; Bridges and Fly-overs; Guard rails; Culverts; Retaining Sides; Mix wells; Foot bridges; River Spans; Tunnels and Underpasses;
